Adaptation from invisible flicker.
نویسندگان
چکیده
Human ability to resolve temporal variation, or flicker, in the luminance (brightness) or chromaticity (color) of an image declines with increasing frequency and is limited, within the central visual field, to a critical flicker frequency of approximately 50 and 25 Hz, respectively. Much remains unknown about the neural filtering that underlies this frequency-dependent attenuation of flicker sensitivity, most notably the number of filtering stages involved and their neural loci. Here we use the process of flicker adaptation, by which an observer's flicker sensitivity is attenuated after prolonged exposure to flickering lights, as a functional landmark. We show that flicker adaptation is more sensitive to high temporal frequencies than is conscious perception and that prolonged exposure to invisible flicker of either luminance or chromaticity, at frequencies above the respective critical flicker frequency, can compromise our visual sensitivity. This suggests that multiple filtering stages, distributed across retinal and cortical loci that straddle the locus for flicker adaptation, are involved in the neural filtering of high temporal frequencies by the human visual system.
منابع مشابه
Visually-based temporal distortion in dyslexia
In this study, we show that invisible flicker adaptation reduces the perceived duration of a subsequently viewed stimulus in control subjects, but not in dyslexics. Dyslexics, like controls, show apparent duration compression after 20Hz flicker and show normal shifts in apparent temporal frequency after adaptation. However a subgroup of the test group, scoring low on both a test of phonological...
متن کاملColor from invisible flicker: a failure of the Talbot–Plateau law caused by an early ‘hard’ saturating nonlinearity used to partition the human short-wave cone pathway
The Talbot-Plateau law fails for flicker detected by the short-wavelength-sensitive (S) cones: a 30-40 Hz target, flickering too fast for the flicker to be resolved, looks more yellow than a steady target of the same average intensity. The color change, which is produced by distortion at an early compressive nonlinearity, was used to reveal a slightly bandpass S-cone temporal response before th...
متن کاملMonocular and binocular mechanisms mediating flicker adaptation
Flicker adaptation reduces subsequent temporal contrast sensitivity. Recent studies show that this adaptation likely results from neural changes in the magnocellular visual pathway, but whether this adaptation occurs at a monocular or a binocular level, or both, is unclear. Here, two experiments address this question. The first experiment exploits the observation that flicker adaptation is stro...
متن کاملNo attentional capture from invisible flicker
We tested whether fast flicker can capture attention using eight flicker frequencies from 20-96 Hz, including several too high to be perceived (>50 Hz). Using a 480 Hz visual display rate, we presented smoothly sampled sinusoidal temporal modulations at: 20, 30, 40, 48, 60, 69, 80, and 96 Hz. We first established flicker detection rates for each frequency. Performance was at or near ceiling unt...
متن کاملInteractions between flicker thresholds and luminance pedestals
We investigated the interactions between flicker thresholds and luminance pedestals using threshold versus contrast (TvC) and method of constant stimuli paradigms. High amplitude luminance pedestals were found to elevate flicker thresholds, but low amplitude luminance pedestals were unable to reduce flicker thresholds. Luminance pedestals elevated flicker thresholds more at low temporal frequen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 101 14 شماره
صفحات -
تاریخ انتشار 2004